

A Good Start Matters: Enhancing Continual Learning with Data-Driven Weight Initialization

Md Yousuf Harun¹, Christopher Kanan² ¹Rochester Institute of Technology, ²University of Rochester

Motivation

- Problem: In continual learning (CL), classifier weights for newly encountered classes are typically initialized randomly, leading to high initial training loss (spikes) and instability.
- Consequently, achieving optimal convergence requires prolonged training, increasing computational costs.

TL;DR: Inspired by Neural Collapse, we propose a Least-Square-based weight initialization method that optimally aligns classifier weights for newly introduces categories with their feature distribution.

Results Least-Square 64.48 64.32 64.34 62.21 62.91 63.29

65.64 65.43 65.69

63.76 <u>64.39</u> <u>64.77</u>

Goal: investigating how weight initialization impacts

- CL without changing pre-trained representations where we train the last-layer classifier while keeping the backbone frozen (top fig)
- continual representation learning where we selectively update the DNN backbone using LoRA (bottom fig)

Observation: LS initialization enhances CL performance and enables efficient adaptation to new tasks in both settings

Data-Driven Weight Initialization

- In DNNs trained with Mean-Squared-Error (MSE) loss, neural collapse gives rise to a Least-Square (LS) classifier in the last layer, whose weights can be analytically derived from learned features
- We leverage this LS formulation to initialize classifier weights in a data-driven manner, aligning them with the feature distribution

MSE loss:
$$L(\mathbf{W}) = \frac{1}{2N} \|\mathbf{W}\mathbf{Z} - \mathbf{Y}\|_2^2 + \frac{\lambda}{2} \|\mathbf{W}\|_F^2.$$

Differentiation:
$$\dfrac{\partial L}{\partial \mathbf{W}} = \dfrac{1}{N} (\mathbf{W} \mathbf{Z} \mathbf{Z}^{\top} - \mathbf{Y} \mathbf{Z}^{\top}) + \lambda \mathbf{W} = 0.$$

LS Weights:
$$\mathbf{W}_{LS} = \frac{1}{C}\mathbf{M}^{\top}(\mathbf{\Sigma}_T + \boldsymbol{\mu}_G\boldsymbol{\mu}_G^{\top} + \lambda\mathbf{I})^{-1}.$$

LS weights *solely* depend on feature statistics and therefore can be analytically derived

Random Initialization Causes Loss Spike

pre-trained on ImageNet-1K incrementally learns 5 tasks (73 classes per task) from Places-365 dataset using rehearsal

Observations:

Random initialization causes loss spikes whereas data-driven initialization prevents loss spikes and improves accuracy

Generality

- ❖ Goal: investigating whether LS initialization remains effective when integrated with different CL methods and DNN architectures.
- Observation: LS enhances CL performance of experience replay, EWC, and DER++. It demonstrates efficacy for ConvNeXt and ResNet architectures.

Acknowledgments

We thank NSF for financially supporting this research