A Good Start Matters: Enhancing Continual Learning with
Data-Driven Weight Initialization
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Motivation

e Problem: In continual learning (CL), classifier weights for newly encountered classes are typically 80-
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e Consequently, achieving optimal convergence requires prolonged training, increasing computational costs.
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TL;DR: Inspired by Neural Collapse, we propose a Least-Square-based weight initialization method
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that optimally aligns classifier weights for newly introduces categories with their feature distribution. y

Random Initialization Causes Loss Spike

Data-Driven Weight Initialization
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