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TL;DR: We developed a method to jointly optimize OOD detection
and generalization by leveraging the Neural Collapse phenomenon
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Neural Collapse Degrades OOD Generalization
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e In our NeurlPS 2024 paper “What Variables Affect Out-of-Distribution Generalization in
Pretrained Models?”, we show that intermediate NC degrades OOD generalization.

e As shown above, linear probe ID accuracy monotonically increases as a function of layers,
but OOD accuracy only increases until the Neural Collapse is reached and then decreases.

e [n this follow-up work, we demonstrate that the degree of NC plays a major role in both
\_ OOD detection and generalization.
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Method Overview: Controlling Neural Collapse
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Implication of Neural Collapse:

e Neural Collapse (NC): NC is a phenomenon where DNNs develop compact and structured| |> A single feature space cannot effectively achieve both OOD detection and generalization.

class representations. While typically seen in the final layer, it can also occur to varying| [> To address this, we control NC at different DNN layers, using an encoder optimized for
degrees in the last K layers — known as intermediate NC.

generalization and a projector tailored for detection.

How Do We Control Neural Collapse?
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Core Insight: Neural Collapse Relates to OOD Detection & Generalization
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«— Stronger Neural Collapse (NC1)

Neural Collapse exhibits a strong
positive correlation with OOD
detection. And, it shows negative
correlation with OOD generalization.

Stronger NC improves OOD
detection but degrades OOD
generalization — and vice-versa.

This inverse relationship reveals that
a single feature space cannot
effectively optimize both tasks.

We measure NC1, OOD detection,
and OOD generalization (via linear

Maximize Entropy
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=> Layer for OOD generalization: we introduce entropy regularization to mitigate NC in
the encoder, improving feature diversity for OOD generalization.

Minimize Neural Collapse

|

NC. In particular, we show that collapsing implies entropy diverges to negative infinity.

projector to induce NC in the final layer, improving feature compactness for detection.

€® For the ETF projector, we configure a two-layer MLP as a simplex ETF (equinorm and

probing) across DNN layers. 7/ maximum equiangularity) and keep it frozen during training.
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€ We develop a theoretical framework that explains how entropy regularization mitigates

€ For the entropy regularization, we leverage nearest-neighbor-based density estimation.
-> Layer for OOD detection: we leverage a fixed simplex Equiangular Tight Frame (ETF)

Experimental Setup
d Datasets: Used ImageNet-100 as |ID dataset and eight OOD datasets: NINCO, CUB-200,
CIFAR-100, ImageNet-R, Flowers-102, Aircrafts, Oxford Pets, and STL-10
[ Architecture: VGG17, ResNet18, ResNet34, ViT-Tiny, and ViT-Small
4  NC Evaluation: Four NC metrics NC1, NC2, NC3, and NC4 characterized by NC criteria.
A lower NC indicates stronger Neural Collapse and vice-versa.
d Performance Metrics: ID generalization error, OOD generalization error, and OOD
detection error (FPR95). 7
Neural Collapse Criteria
1. Feature Collapse (NC1): Intra-class features collapse to a Classifiors
single mean with low variability. o000
2. Simplex ETF (NC2): Class means, centered at the global reaiires
mean, form a maximally spaced simplex on a hypersphere. R —82
3. Self-Duality (NC3): Classifiers align tightly with class
means, creating a nearly self-dual configuration.
4. Nearest Class Mean (NCM) Decision (NC4): Classification
. resembles a NCM scheme, based on class mean proximity. )
Correlation between Neural Collapse and Entropy
- <
1.0 e Neural collapse (NC1) correlates with
R=0.88 o B @°
& ol o0 entropy. The stronger the neural
0.8 : > ® collapse, the lower the entropy and
>0 © ° vice-versa.
fg’ e [ncreasing the entropy of the encoder’s
W0.41—ze embeddings may mitigate NC and
0 enhance OOD generalization.
e \We analyze different layers of VGG17
0.4 o~ 06 07 08 0.0 networks that are pre-trained on
_ «— Stronger Neural Collapse (NC1) ImageNet-100 dataset (ID). y

Qualitative Results: Encoder Vs. Projector
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The following results are based on VGG17 models pre-trained on ImageNet-100 dataset (ID).

UMAP Visualization of Embeddings:
e Projector embeddings exhibit
significantly stronger neural
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collapse—evidenced by 5.6x lower

NC1 and tighter clustering around
class means—compared to encoder

embeddings.

e \We show 10 ImageNet classes by

distinct colors.

OOD Detection: As shown in energy score distribution, the projector creates a greater

separation between ID & OOD data and achieves a lower FPR95 than the encoder.

Encoder (FPR95: 84.95%)

Projector (FPR95: 67.69%)
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Quantitative Results: Encoder Vs. Projector
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e The encoder mitigates NC and becomes a better OOD generalizer than the projector.
e The projector intensifies NC and becomes a better OOD detector than the encoder.
6 5.8
Neural Collapse Evaluation: ~ E:;Zitegr
e The projector exhibits lower NC1 values (i.e., ¥
stronger neural collapse) than the encoder 73'4-
across DNN architectures. %3 -
e We report NC1 (feature collapse), the most S 2.2 7
dominant indicator of neural collapse. © 2 1.8 /
=
e All above results are averaged across eight 21 0 /
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OOD Detection Performance OOD Generalization Performance

> Baseline DNNs lack mechanisms to control NC, resulting in poor performance.
> Our method controls NC and achieves significant improvements over these baselines.

> Results are based on DNNs pre-trained on ImageNet-100 dataset (ID), with performance
averaged across eight OOD datasets.

Comparison with SOTA OOD Detector: 00, = ours
e \We compare our method with NECO, a Q
state-of-the-art OOD detection method based ‘g 90 88.1 35 7
on NC properties. £ 83.2
| “ g0{ 77.8 v
e Since NECO does not address OOD 5 /
generalization, we restrict this comparison to ‘g 20 59.7 /
OOD detection only. 9 ;1 // /
e Our method consistently outperforms NECO g 60 / / /
across all settings. ° 7 7 7Z/M
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