

Rochester

Institute of

Technology

GRASP: A Rehearsal Policy for Efficient Online Continual Learning

Md Yousuf Harun¹, Jhair Gallardo¹, Junyu Chen², Christopher Kanan² ¹Rochester Institute of Technology, ²University of Rochester

- forgetting of previously learned abilities.
- neural networks (DNNs).

- GRASP is compute and memory efficient. GRASP outperforms
- GDumb, and DER++.
- CIL, IID, and long-tailed distributions.
- rehearsal.

Acknowledgements

We thank NSF for financially supporting this research.

Summary

CIL on ImageNet, GRASP outperforms 17 rehearsal policies including uniform balanced.

uniform balanced when integrated with various CL methods e.g., SIESTA,

• GRASP is effective across data distributions including

 GRASP outperforms uniform balanced in text classification on 5 benchmark datasets.

• GRASP is effective for both veridical and latent

• GRASP has potential to supplant expensive periodic retraining and make on-device CL more efficient.