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Motivation & Problem Setup

 

● Goal: In open-world settings, DNNs must detect novel concepts and maximize 
forward transfer to facilitate efficient learning.

● Research Question: How can we build representations in a DNN to simultaneously 
achieve both OOD detection and generalization?

● Challenge: Optimizing OOD detection hurts OOD generalization and vice-versa.
● TL;DR: We developed a method for jointly optimizing the OOD detection and 

forward transfer (OOD generalization) based on the Neural Collapse phenomenon.

 

Core Insight: Neural Collapse Relates to OOD Detection & Generalization

Correlation between Neural Collapse and Entropy

Qualitative Results: Encoder Vs. Projector

Experimental Setup
❏ Dataset: Used ImageNet-100 as ID dataset and eight OOD datasets: NINCO, CUB-200, 

CIFAR-100, ImageNet-R,, Oxford 102 Flowers,, Aircrafts, Oxford Pets, and STL-10
❏ Architecture: VGG17, ResNet18, ResNet34, ViT-Tiny, and ViT-Small
❏ NC Evaluation: Four NC metrics NC1, NC2, NC3, and NC4 characterized by NC criteria. 

A lower NC indicates stronger Neural Collapse and vice-versa.
❏ Metrics: ID generalization error, OOD generalization error, OOD detection error.

Quantitative Results: Encoder Vs. Projector

Comparison with Baseline

Neural Collapse Degrades OOD Generalization
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❏ Neural Collapse exhibits a strong 
positive correlation with OOD 
detection. And, it shows negative 
correlation with OOD generalization.

❏ Stronger NC improves OOD 
detection but degrades OOD 
generalization – and vice-versa.

❏ This inverse relationship reveals that 
a single feature space cannot 
effectively optimize both tasks.

❏ We measure NC1, OOD detection, 
and OOD generalization (via linear 
probing) across  DNN layers.

● Neural collapse (NC1) correlates with 
entropy. The stronger the neural 
collapse, the lower the entropy and 
vice-versa.

● Increasing the entropy of the encoder’s 
embeddings may mitigate NC and 
enhance OOD generalization.

● We analyze different layers of VGG17 
networks that are pre-trained on 
ImageNet-100 dataset (ID).

UMAP Visualization of Embeddings:
● Projector embeddings exhibit 

significantly stronger neural 
collapse–evidenced by 5.6x lower 
NC1 and tighter clustering around 
class means–compared to encoder 
embeddings. 

● We show 10 ImageNet classes by 
distinct colors. 

● The encoder mitigates NC and becomes a better OOD generalizer than the projector.
● The projector intensifies NC and becomes a better OOD detector than the encoder.
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Constraints:
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OOD Detection: As shown in energy score distribution, the projector creates a greater 
separation between ID & OOD data and achieves a lower FPR95 than the encoder. 

ID: ImageNet-100, OOD: NINCO-64 ID: ImageNet-100, OOD: Flowers-102

Neural Collapse Evaluation: 
● The projector exhibits lower NC1 values (i.e., 

stronger neural collapse) than the encoder 
across DNN architectures. 

● We report NC1 (feature collapse), the most 
dominant indicator of neural collapse.

● All above results are averaged across eight 
OOD datasets

OOD Detection Performance  OOD Generalization Performance

➢ Baseline DNNs lack mechanisms to control NC, resulting in poor performance.
➢ Our method controls NC and achieves significant improvements over these baselines.
➢ Results are based on DNNs pre-trained on ImageNet-100 dataset (ID), with performance 

averaged across eight OOD datasets.

Comparison with SOTA OOD Detector: 
● We compare our method with NECO, a 

state-of-the-art OOD detection method based 
on NC properties.

● Since NECO does not address OOD 
generalization, we restrict this comparison to 
OOD detection only.

● Our method consistently outperforms NECO 
across all settings.

How Do Variables Impact Neural Collapse?

● Neural Collapse (NC): NC is a phenomenon where DNNs develop compact and structured 
class representations. While typically seen in the final layer, it can also occur to varying 
degrees in the last K layers – known as intermediate NC.

● In our NeurIPS 2024 paper “What Variables Affect Out-of-Distribution Generalization in 
Pretrained Models?”, we show that intermediate NC degrades OOD generalization.

● As shown above, linear probe ID accuracy monotonically increases as a function of layers, 
but OOD accuracy only increases until the Neural Collapse is reached and then decreases.

● In this follow-up work, we demonstrate that the degree of NC plays a major role in both 
OOD detection and generalization.

In-distribution (CIFAR-10) Out-of-distribution (CIFAR-100)

In our NeurIPS-2024 paper, we study how variables impact NC and find that:
● Our SHAP analysis reveals that image resolution is the most dominant variable followed 

by augmentations and ID class count in terms of reducing NC and enhancing transfer.
● The characteristics of toy datasets e.g., CIFAR lead to sub-optimal representations that 

hinder OOD generalization, explaining why methods successful on such datasets 
frequently fail on real-world datasets e.g., ImageNet.

● Increasing ID class count (between-class diversity), using augmentations (within-class 
diversity), and using higher image resolution (hierarchical features) greatly reduce NC.

● Increasing dataset diversity significantly reduces NC, and with sufficient diversity, it can be 
entirely prevented.

● In this follow-up work, we show that entropy regularization offers an alternative means to 
mitigate NC and enhance OOD generalization.

Project Website

Neural Collapse Neural Collapse

The following results are based on VGG17 models pre-trained on ImageNet-100 dataset (ID).
  Encoder (NC1=2.18) Projector (NC1=0.39)

Method Overview: Controlling Neural Collapse

● A single feature space cannot effectively achieve both OOD detection and generalization.
● To address this, we control NC at different DNN layers, using an encoder optimized for 

generalization and a projector tailored for detection.

➔ Layer for OOD generalization: we introduce entropy regularization to mitigate NC in the 
encoder, improving feature diversity for OOD generalization.
◆ We develop a theoretical framework that explains how entropy regularization mitigates 

NC. In particular, we show that collapsing implies entropy diverges to negative infinity.
◆ For the entropy regularization, we leverage nearest-neighbor-based density estimation.

➔ Layer for OOD detection: we leverage a fixed simplex Equiangular Tight Frame (ETF) 
projector to induce NC in the final layer, improving feature compactness for detection.
◆ For the ETF projector, we configure a two-layer MLP as a simplex ETF (equinorm and 

maximum equiangularity) and keep it frozen during training.

Neural Collapse Criteria
1. Feature Collapse (NC1): Intra-class features collapse to a 

single mean with low variability.
2. Simplex ETF (NC2): Class means, centered at the global 

mean, form a maximally spaced simplex on a hypersphere.
3. Self-Duality (NC3): Classifiers align tightly with class 

means, creating a nearly self-dual configuration.
4. Nearest Class Mean (NCM) Decision (NC4): Classification 

resembles a NCM scheme, based on class mean proximity.

 


